Towards bedside monitoring at the subcellular level

Bert Mik
Department of Anesthesiology
Biosensing

Biosensing is the conversion of biological processes into useful information.

Incorporating “a variety of means, including electrical, electronic, and photonic devices; biological materials (e.g., tissue, enzymes, nucleic acids, etc.) and chemical analysis”

PATIENT MONITORING

e.mik@erasmusmc.nl

the future of Biosensing
The heart of the hospital

e.mik@erasmusmc.nl

the future of Biosensing
Bedside monitoring

Heart rate
ECG
Arterial blood pressure
PA/wedge pressure
Central venous pressure
Respiratory rate / etCO$_2$
Arterial oxygen saturation
Body temperature
Bloodgas analysis

e.mik@erasasmusmc.nl

the future of Biosensing
Additional information

- Microbiology
- Virology
- Clinical chemistry
- Laboratory tests
- Organ specific tests
- Imaging

BUT: invasive and / or takes time to get results
Limitations of monitoring

- Conditio sine qua non
- No information about:
 - Microcirculatory function
 - Tissue oxygenation
 - Cellular metabolism

(a) Sphincters open

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.
Focus on microcirculation

e.mik@erasasmusmc.nl

the future of Biosensing
Septic Shock

Infection → Sepsis → Septic Shock

30-60% mortality

Blood pressure and cardiac output

Laser doppler / speckle / MicroScan

No direct bedside monitoring exists

E. mik@erasmusmc.nl
Metabolism

Oxygen

Carbohydrates

\[\text{CO}_2 \]
\[\text{H}_2\text{O} \]

Energy for life

the future of Biosensing
Mitochondria

- Energy producing organelles
- Destination of oxygen

e.mik@erasmusmc.nl

the future of Biosensing
How to monitor the mitochondria?

Pulse oximetry
O2C/NIRS

the future of Biosensing
The breakthrough ...

Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX

Egbert G Mik1,2, Jan Stap3, Michiel Sinaasappel3, Johan F Beek4, Jacob A Aten3, Ton G van Leeuwen4,5 & Can Ince1

1Department of Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. 2Department of Anesthesiology, Erasmus Medical Center, University of Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands. 3Center for Microscopical Research, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands. 4Laser Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. 5Biophysical Engineering, Biomedical Technology Institute, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. Correspondence should be addressed to E.G.M. (e.g.mik@amc.uva.nl).

RECEIVED 14 JUNE; ACCEPTED 10 AUGUST; PUBLISHED ONLINE 23 OCTOBER 2006; DOI:10.1038/nmeth940

NATURE METHODS | VOL. 3 NO.11 | NOVEMBER 2006 | 939

e.mik@erasmusmc.nl

the future of Biosensing
A mitochondrial oxygen sensor

MITOCHONDRIA

ALA

PpIX

Haem

PO$_2$ DEPENDENT QUENCHING

cytochrome c

haemoglobin

myoglobin

e.mik@erasmusmc.nl

the future of Biosensing
Induction of protoporphyrin IX
Mitochondrial PO$_2$ measured by delayed fluorescence of endogenous protoporphyrin IX

Egbert G Mik1,2, Jan Stap3, Michiel Sinaasappel4, Johan F Beek4, Jacob A Aten3, Ton G van Leeuwen4,5 & Can Ince1
Thus ...

ALA induces PpIX

PpIX localized in the mitochondria

PpIX has oxygen-dependent optical properties

Mitochondrial oxygen sensor
Basic implementation

Pulsed tunable laser

Fiber

Integrator

PMT

Mono-chromator

Lens

Tissue

reset

the future of Biosensing

e.mik@erasmusmc.nl
Application on tissues

e.mik@erasmusmc.nl

the future of Biosensing
In vivo rat liver: mitoPO$_2$ vs FiO$_2$

EG Mik et al., Biophys. J. 95: 3977-3990, 2008

e.mik@erasmusmc.nl
Optical biopsy

Penetration depth ≈ 500 µm
Small tissue volume
From oxygen to metabolism

Sham

$V_{\text{max}} = 4.3 \text{ mmHg s}^{-1}$
$P_{50} = 26.6 \text{ mmHg}$

CLP

$V_{\text{max}} = 3.2 \text{ mmHg s}^{-1}$
$P_{50} = 24.2 \text{ mmHg}$

the future of Biosensing
Optical bedside monitoring

e.mik@erasmusmc.nl

the future of Biosensing
Summary

MACRO

Standard monitoring

Conditio Sine Qua Non

MICRO

Microcirculation

NANO

Subcellular / organelle

Cellular function